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Abstract

Missions using unmanned aerial vehicles have increased in the past decade. Currently,

there is no way to refuel these aircraft. Accomplishing automated aerial refueling can

be made possible using the stereo vision system on a tanker. Real world experiments

for the automated aerial refueling problem are expensive and time consuming. Cur-

rently, simulations performed in a virtual world have shown promising results using

computer vision. It is possible to use the virtual world as a substitute environment for

the real world. This research compares the performance of stereo vision algorithms

on synthetic and real world imagery.
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STEREO VISION: A COMPARISON OF SYNTHETIC IMAGERY VS REAL

WORLD IMAGERY FOR THE AUTOMATED AERIAL REFUELING PROBLEM

I. Introduction

1.1 Overview/Background

The United States Air Force (USAF) has developed a strong dependence on Un-

manned Aerial Vehicles (UAV). These aircraft are known for flying lengthy intelligence

missions. More recently, UAVs have entered into combat with next generation Un-

manned Combat Aerial Vehicles (UCAV). UCAVs extra weaponry does not allow for

the same flight time endurance found in reconnaissance-oriented UAVs. This impedi-

ment makes it paramount that aerial refueling be made available to UCAVs, just as it

is for modern combat aircraft. Current USAF refueling tankers require a boom oper-

ator seated in the rear pod of the tanker. This operator actuates the boom to conduct

aerial refueling. To enable docking between a UCAV and a tanker, the process relies

heavily on constant communication and precise movements of the receiving aircraft.

This requirement is a major safety concern due to the latency that exists between a

UAV operator and the UAV. Several seconds of latency between the command and

execution create a dangerous environment for the UAV and the boom operator.

Modern tankers are replacing the rear pod with a stereo vision system. This

system provides a digital video feed enabling the use of stereo vision algorithms.

With the use of these algorithms, the tanker can potentially guide a UAV into the

proper refueling position for a mid-flight refuel. Eventually, it may be possible to

automate the refueling process to replace the boom operator, thus reducing the flight
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crew. Motivated by this, the Air Force Institute of Technology (AFIT) is researching

possible solutions for the Automated Aerial Refueling (AAR) problem.

The contribution of this work compares synthetic stereo imagery against real stereo

imagery to evaluate the feasibility and efficiency of using 3D virtual worlds for AAR

related development. Research at AFIT has produced a virtual environment capable

of simulating stereo computer vision using synthetic imagery. Simulations in the vir-

tual world estimate the 6 degrees of freedom (6DoF) of the receiver using the iterative

closest point (ICP) algorithm. The performance of ICP must still be compared using

real and synthetic imagery from the same experiments.

1.2 Problem Statement

Quantify and compare the performance of computer vision using real world im-

agery and synthetic imagery taken from a 3D virtual world.

1.3 Research Goals and Hypothesis

• Create a virtual environment nearly identical to a real world environment for

re-creation of real world experiments

• Conduct experiments in the real world collecting truth data with less than 2mm

error

• Replay truth data in the virtual environment

• Quantify the accuracy of ICP using computer vision on real world imagery

• Quantify the accuracy of ICP using computer vision on synthetic imagery

• Compare the error in position estimation for both environments

• Find trends in position estimation for both environments

2



• Show synthetic imagery can be used in lieu of real imagery without affecting

the vision processing results

1.4 Approach

Experiments involve flying and tracking a quadcopter Parrot Bebop drone. These

flights were recreated in the virtual world using a model of the quadcopter. The

experiments captured by stereo vision cameras can be replicated in the 3D Virtual

World and its corresponding synthetic imagery can be captured. Computer vision al-

gorithms can then process the real and synthetic imagery. The accuracy and behavior

of these estimations can be compared.

1.5 Assumptions and Limitations

The propellers of the quadcopter drone were removed from the aircraft. To achieve

a mock top down view, the drone was connected to clear fishing line. This allowed

the orientation to be perpendicular to the ground, displaying the top of the drone to

the cameras. It was then “flown” perpendicular to the ground in several flight paths.

These flights allowed the drone to cover most of the volume that the cameras could

see. While not accurately scaled down, this volume mimics the volume of space that

makes up the refueling envelope. The scaling is not one to one because the reduction

in the cameras baseline still does not allow a scaled aircraft to fit in the real world

environment used. However, the cameras used have the same 56 degree field of view

as used in previous research. The drone distance from the cameras covers a scaled

down representation of a receiver in the refueling envelope.

The position and orientation of the drone was captured and logged to replay

experiments in the virtual world. These logs also serve as the truth data and are

accurate within a 2mm margin. The virtual sensors follow the pinhole camera model

3



without lens distortion yet should produce the same quality image as the real world.

1.6 Research Contributions

• Quantifies the accuracy of computer vision using real world imagery

• Quantifies the accuracy of computer vision using synthetic imagery from a 3D

virtual world

• Shows behavioral trends that are present in both environments

1.7 Terms

Throughout this research there are many terms that need to be defined in order

to understand the foundation.

Real World

• Refers to the real, physical world. Experiments are captured and recorded using

both truth positioning and stereo cameras.

Virtual World

• The AFTR BURNR Engine: This is a game engine which allows human inter-

action to navigate and and change perspectives. This is the environment where

simulations are performed and the real world Experiments are re-created.

Vicon Chamber

• Real world chamber capable of producing truth positioning and orientation data

with up to 2mm error. Also where the location for real world experiments are

conducted.

Simulation

4



• The replaying of real world experiments in the virtual world.

Real Imagery

• Stereo images captured by real digital cameras.

Synthetic Imagery

• Stereo images captured by virtual sensors in the virtual world.

1.8 Thesis Overview

Chapter 2 examines the background of the AAR problem. Additionally, this

chapter explains the fundamentals of stereo vision, computer vision, and the 3D

virtual world. A literature review of previous and related work finish the chapter.

Chapter 3 describes the methodology of the experiments. The description includes the

computer vision pipeline, the real world equipment used, and the equivalent virtual

environment. The chapter elaborates on the process of estimating the drone’s position

and the reference model’s role. The experiments conducted are explained at the end.

The analysis and visualization of these experiments is presented in Chapter 4. The

final chapter provides a conclusion as well as possible future research relating to this

topic.
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II. Background

2.1 Automated Aerial Refueling (AAR)

Aerial refueling has been a capability that has allowed the USAF to increase its

global reach. Aerial refueling consists of a tanker aircraft providing fuel to a receiver

aircraft. There are two refueling methods, the probe and drogue method and the

boom method as seen in Figure 1. This research aims to assist the USAF’s method

of refueling, the boom method, developed by Boeing [3]. The boom method uses a

boom controlled by a human operator. The receiver aircraft must enter the refueling

envelope, a 3D volume behind the tanker. Receiver positioning relative to the tanker

must be very precise for the boom operator to guide the boom.

UAVs are used for important roles in the USAF. These roles include reconnaissance

and more recently, combat. The UCAVs do not have the same range as reconnaissance

UAVs. The shorter range of the UCAVs restrict their effectiveness on the battlefield.

This restriction can be solved using AAR, a capability that is not yet possible. AAR

is currently hindered by the latency between the drone operator and the UAV. The

distance between the drone operator and the UAV can delay commands by several

seconds. This latency makes aerial refueling too dangerous due to the precision and

(a) Boom Method [4] (b) Probe and Drogue Method [5]

Figure 1. Refueling Methods
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timing that is required. Latency can be eliminated if the UAV can be automated

with commands from the tanker. While the UAVs do have global positioning systems

(GPS), this technology may not be accurate enough for AAR. Also, the tanker can

potentially block the receiver’s GPS when in the refueling envelope or denied in

contested environments. The use of computer vision combined with data from inertial

measurement units (IMUs) can aid in providing the receiver’s relative six degrees-of-

freedom (6DOF). This information is crucial to solve the AAR problem.

2.2 Computer Vision

Humans their visual cortex to understand the depth and orientation of objects.

This capability can be achieved with computers using complex algorithms. Computer

vision provides geometry, orientation, and other attributes of imagery [6]. Computer

vision must use features in imagery such as corners, colors, and patterns [7] to mimic

human-like capabilities. With multiple cameras and the right algorithms, computer

vision can be used to track and estimate the range of objects [8]. These capabilities

are critical for AAR.

2.3 Pinhole Camera Model

Images produced by the pinhole camera model can be used for computer vision

algorithms. Figure 2 shows the pinhole camera model. The optical center, Fc, is

the origin of the camera frame. An image plane exists a certain length from the

optical center. This plane is parameterized by x and y. An object point P projects

to an image point (u,v). This image point lies on the virtual image plane. When

P projects to (u,v), the depth information is lost. This is because the (x, y, z)

parameters are mapped to (u,v). The principal point, represented by (cx, cy), is

intersected by the depth axis, Z [1]. The focal length of the camera is the distance

7



between the optical center and the principal point. These parameters work together to

accomplish accurate estimations of real world objects using computer visions. While

the real world cameras use a lens, an object point P will still map to a pixel with an

x and y coordinate. Calculating the same parameters for a real world camera is still

necessary for stereo vision.

Figure 2. Pinhole Camera Model [1]

2.4 Stereo Computer Vision

Stereo Vision uses two cameras to mimic human-like depth perception. The depth

can only be calculated when an object is in view of both cameras. This estimation is

achieved using epipolar geometry [9]. The epipolar geometry of a stereo vision system

can be seen in Figure 3. The object point, q, is in view of both the cameras. The

cameras’ optical centers are represented by O1 and O2. The baseline is the distance

8



between the two optical centers. The points where baseline passes through the image

planes are the epipoles, e1 and e2. The object point, q, is portrayed on the image

plane by the projections p1 and p2. All these components are used to create the

epipolar plane. The epipolar lines are represented by l1 and l2. Epipolar geometry

creates a relationship between the image point in one image with the epipolar line of

the other image. This relationship can be condensed using an essential matrix. The

essential matrix relates both the image points and the object point q. This matrix

also relates the geometry between the two cameras. These points define the epipolar

constraint, represented by p>1 Ep2 = 0 [9]. The epipolar constraint allows a matching

pixel to be found on the corresponding epipolar line. Similarly, the fundamental

matrix describes this relationship in more general terms. The fundamental matrix

differs from the essential matrix in that it also includes the intrinsic properties of the

cameras.

Figure 3. Stereo Vision Epipolar Geometry [2]
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Epipolar geometry is essential for finding 3D coordinates. Given two images, it

produces estimated depths of object points in terms of the primary camera’s optical

center. It is required that the images from the left and right camera are taken at the

exact same time. Stereo vision requires knowledge of the cameras’ intrinsic properties,

which are calculated using camera calibration techniques.

2.5 Camera Calibration

In order to produce the critical points and matrices, the cameras must first be

calibrated. The camera calibration calculates both the intrinsic and extrinsic param-

eters. The intrinsic parameters contains the focal length and principal point of a

camera. When calibrating stereo cameras, it is necessary to use image pairs taken

simultaneously. The cameras intrinsic information is used to produce the extrinsic

parameters. These parameters define the cameras orientation and location relative

to the primary camera. When properly calibrated, stereo vision can re-project image

points into 3D space using the re-projection matrices.

Camera calibration is performed by taking multiple images of an object with a

pattern. Generally, this object contains a checkerboard pattern similar to the one used

in [10]. In this application, a black and white checkerboard is used. The square corners

are easily detected by vision algorithms. The corners must be a fixed distance from

each other. The distance is an important parameter used in the calibration process.

The method described by [10] uses the global Levenberg-Marquard Optimization

algorithm, minimizing the re-projection error of each corner.

2.6 Registration

Properly calibrated cameras can produce a sensed point cloud that represents ob-

ject locations. In computer vision, registration is the matching of 2D or 3D reference
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point clouds to the sensed point cloud [8]. The reference model of the object must

first be created in order to match points. The reference model represents the desired

object as a series of points. The reference model points are matched to the sensed

points producing an estimated pose of an object, as seen in Figure 4. This registra-

tion can be done in two ways, rigid or non-rigid. Non-rigid registration allows for the

object vertices to be warped before matching while rigid registration does not.

(a) Original Object (b) Sensed Point Cloud

(c) Reference Model Point Cloud (d) After Successful Registrations

Figure 4. Registration Process

A fundamental method for rigid 3D registration is the iterative closest point (ICP)

algorithm presented in [11]. Every point in the sensed model is matched with the

closest point found on the reference model. The reference model is then put into a

translation and rotation based on this matching. The process repeats, minimizing
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the mean squared error. Once a threshold error or maximum iterations is reached,

the ICP algorithm stops.

The ICP algorithm converges to a root mean squared (rms) error of 0. This does

not mean that it will find the correct registration or global minimum. It is possible

that ICP will settle on a local minimum, generating an incorrect final registration

as seen in Figure 5. When stuck in a local minimum the algorithm will not find

the global minimum. Methods to break and avoid local minima are provided in [12].

It is also possible to start the reference model in a good orientation to improve the

accuracy of the algorithm. The speed of the algorithm was improved in [13] with the

implementation of K-D tree data structures. This method tracks points, resulting in

faster comparisons for ICP. Further improvements in the speed and accuracy of ICP

are found in [14, 15, 16, 17, 18].

2.7 Previous and Related Work

There have been many approaches toward the AAR problem. Differential GPS

is one of the methods that has proven beneficial. In [19], a flight test successfully

achieved AAR using the probe and drogue refueling method with differential GPS.

Likewise, [20] performed a mock aerial refueling using one aircraft acting as the re-

ceiver and another acting as a tanker. Both of these tests required the use of GPS

and depended on its availability.

Other research has used a combination of differential GPS with other technologies.

These technologies include inertial measurement units (IMU), Light Detection and

Ranging (LIDAR), and computer vision. It is possible to combine the GPS, IMU,

and computer vision data into one estimate using an Extended Kalman Filter (EKF).

Combining the GPS and IMU data in [21] with supporting flight test data proved to be

beneficial. This approach still greatly depends on the availability of GPS. Computer

12



Figure 5. Reference Model in a Local Minimum

vision was fused with GPS in [22, 23, 24] using an EKF. These approaches required the

addition of markers to the aircraft. In some cases additional cameras were attached to

the receiver aircraft. Additional research in [25] combined GPS, IMU, and computer

vision using an EKF. This method of tracking still required additional hardware that

is not found on current aircraft in the USAF.

LIDAR was used in [26] to create a point cloud using lasers. This research mea-

sured distance from the tanker using a scanning LIDAR mounted on the receiver.

This method proved to be useful yet added additional hardware to the receiver. It

also poses a security threat to stealth missions if an aircraft uses lasers over what

could be hostile territory. Work by [27] used sensors on the receiver paired with

lights on the drogue.
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Computer vision can use feature detection or point matching to assist in pose

estimation. The speed and accuracy of both point matching and feature matching

using monocular vision was quantified in [28]. Feature matching with monocular

vision was used in [29] and [30] when assessing its value for the AAR problem.

Binocular vision was used in [31] to compute receiver pose. Special markers were

added to virtual aircraft allowing speeded up robust features (SURF) to be extracted.

The markers, paired with SURF, help process the receiver pose. Building off of this

virtual experiment, a real world experiment conducted in [32] used binocular vision

paired with saliency maps to help calculate the pose of a receiver. The saliency maps

produce easily identifiable features. The aircraft used in this experiment were two

small UAV copters imitating a tanker and receiver. Both the virtual and the real

world experiments required adding markers to the receiver.

Work on the AAR problem was performed at AFIT by [33, 34, 35]. These ap-

proaches use stereo vision solutions for the AAR problem. Denby uses a Vicon cham-

ber as the environment for the mock refueling approach. A Vicon chamber measured

the distance between a stereo rig approaching a scaled down aircraft. The imagery

was processed in real time, but did not provide an estimation accurate enough for

AAR. Work done by [35] used a virtual world as well as virtual cameras in order

to mimic the real world. A refueling flight approach was captured using synthetic

imagery. The tanker boom was removed from the model to produce an unobstructed

view of the receiver. The reference model used was shelled in a way that the bottom

half of the aircraft was not included. This produced real time pose estimation of the

aircraft with less than 20cm error.

The AAR problem has been tested in both the real world and in virtual environ-

ments. The research done in [25, 28, 29, 36] used MATLAB Simulink and Virtual

Reality Toolbox. These environments do not produce imagery that closely resembles
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the real world. Work in [31] used real world cameras with virtual imagery by directing

the cameras at two different monitors. Werner used the Ogre 3D graphics engine in

[34]. While the virtual imagery proved beneficial for pose estimation, the methodol-

ogy did not imitate the real world flight paths or the same hardware already existing

on the KC-46. Virtual environments proposed in [37, 38] do not provide the capabil-

ities to use computer vision. Research done in [39, 40] use a Kinect sensor to map

out real world objects into a virtual world. This is all done using KinectFusion. This

technology use simultaneous localization and mapping (SLAM) to produce a virtual

scene in real time. The 6DOF of the Kinect sensor must be constantly tracked in

order to create an accurate reconstruction of the real world. The sensor also uses an

infrared depth sensor that does not work in outdoor environment.

Vision sensors are used in several different aspects for pedestrian and vehicle

detection using neural networks. Training neural networks takes large data sets of

imagery. Work in [41] uses a deep learning for vehicle detection. The architecture is

trained exclusively on synthetic imagery. Once trained, real world imagery of vehicles

is tested. A scene specific pedestrian detector is used in [42]. The scene is modeled

after the location that is under surveillance. Modeled pedestrians are then placed

in the scene. The camera parameters are used to create image distortion on the

pedestrians as if it was the real vision sensor being used. The trained network is then

tested on the real scene. Similarly, [43] evaluates the possibility of training pedestrian

detection using only synthetic imagery. Two neural networks are trained exclusively

on real or synthetic imagery. These trained neural networks are then tested on the

same set of imagery. A high correlation is found in performance of both trainings

as well as a correspondence in detection results. Stop sign distance is measured in

[44] using a virtual world. Single synthetic images are taken from the virtual world

at several ranges. The Grand Theft Auto V engine is used in [41, 44]. This engine
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can accurately model the real world with photo realistic imagery as well as several

weather conditions, lighting effects, and hundreds of human and car models.

Several experiments have compared the use of synthetic imagery to replace real

world imagery. These experiments were mainly used to train neural networks and

not for pose estimation. The work performed toward pose estimation has all been

either in a simulation or real world experiments. It is apparent the use of real world

and synthetic imagery for pose estimation needs to be quantified. Real world vision

experiments recreated in a virtual world would greatly benefit the AAR research.

This would provide a comparison in performance in both environments.
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III. Methodology

Comparing computer vision in the real world and the virtual world require several

things to be closely related. These include the object, the environment, the real and

virtual camera parameters, the calibration output of those cameras, the registration

models, and the computer vision pipeline. The object and environment are easily

imitated using modeling software. The real world camera parameters can be imple-

mented into the virtual sensors. These can both be calibrated using checkerboards.

The calibration outputs can be compared to see how closely they relate. Computer

vision is managed by Open Source Computer Vision (OpenCV) libraries [1].

The drown follows several different flight paths that cover the majority of the

viewing volume. The motion is precisely tracked via the Vicon chamber. The drone

and Vicon environment are accurately modeled in the virtual world. The drone

follows the logs from the Vicon chamber to recreate the real world experiments. Both

the real and virtual experiments are captured using stereo vision. The estimation of

the drone location will follow the same computer vision pipeline for both real and

synthetic imagery.

3.1 Environments

The real world can be replicated in the virtual world. Objects can be modeled

and rooms details can be textured. In order to accurately compare the performance

of ICP on real world and virtual world data, the environments must match.

Real World.

The real world experiments are conducted in a Vicon chamber. This chamber uses

eight infrared cameras to track spherical markers attached to objects. The multiple
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cameras enable the system to accurately track an object’s position and orientation.

In static and dynamic studies, [45] was able to achieve mean errors of 0.15mm for

static objects and less than 2mm error for dynamic objects depending on their speed.

After Vicon calibration, a similar mean error less than 2mm was calculated for this

research.

Collecting data for experiments involves several systems. A collection machine is

used to collect and process images from the cameras. The raw Vicon data is collected

through a different windows machine. This machine is controlled by a linux laptop

via ethernet. The laptop receives raw Vicon data and turns it into human readable

numbers. The laptop is also running an NTP server that syncs the collection machine

and Vicon machine clocks. Timing is important to correlate images with the correct

Vicon position information.

The object being tracked is a Parrot Bebop quadcopter seen in Figure 6. The

quadcopter was attached to a wooden pole via fishing line. This configuration not

only helped the drone follow specific paths, but allowed the drone to consistently “fly”

while rotated 90 degrees. This orientation forced the top of the drone to face the

cameras, revealing more object points to maximize the sensed point cloud. A larger

sensed point cloud provides better matching for ICP. This view is similar to a top down

view of the drone which can be comparable to a tanker looking down at a receiver.

The propellers of the drone were removed providing a consistent model. Moving

propellers change the objects shape, thus requiring a dynamic reference model. It is

also assumed that in a real flight the propellers will be moving too fast to be captured

by the cameras. This phenomenon was observed during recent flight tests conducted

in September of 2017.

The drone has several infrared markers attached to it. This allows the Vicon

chamber to track its movements at 100HZ. The drone position and orientation is
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Figure 6. Parrot Bebop Drone

logged with the time stamp, XYZ position, and a quaternion. Unlike previous re-

search, these markers are not used to aid in the estimation of the pose of the aircraft.

This data is used as the truth data as well as the log file to recreate the flight in the

virtual world.

Virtual World.

The virtual world is the same OpenGL based AFTR Burner engine used in [35].

This engine uses high fidelity models and textures that represent the real world [46].

The AFTR Burner engine is also capable of visualizing the output of synthetic sensors

[47]. These sensors can be specified to match the parameters of real world cameras.

As the receiver pose data is updated, the sensors render a stereo pair of images.

The Vicon chamber was modeled using the floor and back two walls. The cameras
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face these walls when collecting data. The real world Vicon chamber and re-creation

can be seen in Figure 7. The virtual drone is a scaled model of the Parrot Bebop

drone. Due to the small size, the Vicon tracking spheres were not modeled on the

virtual reference model.

(a) Vicon Chamber (b) Virtual Vicon Chamber

Figure 7. Recreating the Vicon Chamber

3.2 Stereo Vision

Stereo vision requires the use of two cameras in order to create a point cloud. In

this research, the cameras are set parallel to each other. Due to limitations on space,

the camera’s baseline could not match the .5 meter baseline used in other AFIT

research [35, 48, 49]. The baseline chosen fell between the average pupil distance

of men and women found in [50]. This baseline is small enough to scale down the

distance of the refueling position, without being to close to estimate depth accurately.

After calibration, the distance of the virtual and real world cameras was near 63.5mm.

The cameras used were Prosilica 1290 electro-optical cameras seen in Figure 8. The

position and orientation of the primary camera was captured using the Vicon spheres.

The aspect ratio of these cameras is 1280x960. They are triggered using a BNC cable.

The images are transferred using an ethernet cable directly connected to the collection
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machine. The transfer is done using User Datagram Protocol (UDP). While UDP

usually doesn’t resend packets, there is an on camera buffer that stores images. In the

event that a packet is lost, the collection machine queries the camera and the camera

will resend. The captured data is 24 bit, RGB images. The cameras are triggered at

a rate of 30hz. For this rapid data transfer, each camera had a dedicated gigabit line

to the collection machine. The collection machine can process this imagery using 24

cores before saving it to the 4 terabyte solid state drive.

Figure 8. Stereo Cameras with Vicon Spheres

The use of stereo vision to track a moving object requires the left and right

cameras to take pictures simultaneously. This requirement is easily programmable in

the virtual world, but necessitates extra hardware for the real world cameras. Syncing

the cameras in the real world can be achieved using the triggering board seen in Figure

9. This board receives a signal from the collection machine using a 3.3 volt pulse from

a usb cable. This cable sends a 30hz signal to a tri-state chip on the board. This
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signal branches to the two cameras using a BNC cable from this board. The board

and triggering was tested for drifting between the cameras. This test consisted of the

two cameras pointing at a 60hz monitor. The monitor displayed a stopwatch with

millisecond precision. The cameras captured images at 30hz for tests of 5 minutes,

10 minutes, and 60 minutes. At the end of each test, several image pairs were picked

out, prioritizing images near the end. The displayed times all matched on the image

pairs, confirming no drift or delay in the triggering or processing of the imagery.

Figure 9. Triggering Bord for Syncing Cameras

3.3 Calibration

The calibration process used a checkerboard with known distances between the

squares. The checkerboard was put in different locations and orientations to cover the
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viewing field of the cameras. The cameras simultaneously captured these positions.

The real world images were processed through the Camera Calibration Toolbox for

Matlab [51]. This calibration process requires the user to pick the outer four corners

of the checkerboard. Once the boundary is set, corner detection is used to find the

remaining corners. Once all the images were processed, the intrinsic parameters were

calculated. Figure 10 shows the original picture as well as the picture after corner

detection. When both the right and left cameras’ intrinsic parameters were found,

the toolbox calculated the extrinsic parameters. A display of the stereo extrinsic

parameters, including projections of the checkerboard locations, can be seen in Figure

11. The cameras were calibrated everytime the stereo camera rig was relocated. Over

20 image pairs were used in every calibration to produce sub pixel error.

(a) Original Image (b) Corners Detected

Figure 10. Corner Detection Using Matlab

The virtual world used a similar process for calibration. A black and white virtual

checkerboard was moved around the viewing area of the virtual sensors. Bitmaps of

these positions were captured. Using OpenCV, corner detection was performed and

the intrinsic and extrinsic parameters were calculated. The checkerboard image along

with corner detection of that image can be seen in Figure 12. A total of ten image

pairs were used for calibrating the virtual cameras to produce sub pixel error.
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Figure 11. View of Extrinsic Parameters

(a) Virtual Checkerboard (b) Corner Detection

Figure 12. Corner Detection on Synthetic Imagery

Stereo calibration produces parameters that create a Q matrix. This matrix is

necessary for the computer vision pipeline. Additional matrices proposed in [10] are

also produced in both camera calibration methods. The epipolar constraint error is
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computed using the essential matrix. The average epipolar error is calculated using

the essential matrix with the left and right detected image points, p1 and p2.

3.4 Disparity Map

With proper calibration parameters, the stereo vision pipeline produces a dispar-

ity map. This is done using OpenCV’s block matching function. The block matching

function is simplified when using rectified images. Image rectification aligns corre-

sponding epipoles to be on the same horizontal row in the left and right images. A

point, P , on an object can be represented by Pr and Pl, in the right and left image.

The pixel distance between these image points is the disparity. Rectification skews

the left and right images in such a way that the pixels are on the same horizontal

row, as seen in Figure 13. This process reduces the feature matching search space to

a single row, speeding up disparity map generation. The disparity map is relative to

the left camera, remaining consistent with the re-projection matrix Q.

OpenCV provides adjustment to the total number of disparities as well as the

window size for block matching. These parameters have an effect on the reliability

and accuracy of the point cloud. The number of disparities limit the maximum search

range in pixels for feature matching [1]. The window size defines the size of the pixel

block being matched. A larger window size reduces the number of details that are

included in the point cloud, resulting in less sensed points. A smaller window size

will include finer details, however opens up the potential for more mismatches. It

was found in [35] that a window size of 9 and a number of disparities equal to 48

produce a balanced approach. Disparity maps can be seen in Figure 14. The lighter

the pixel, the closer the point is to the camera, where black sections are the farthest

away. Figure 14a shows the disparity map for the virtual drone up close with no

background. Figure 14b is a disparity map of the real world. The Vicon chamber can
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(a) Original Image Pair

(b) Rectified Image Pair

Figure 13. Image Rectification

be seen in background while the drone is lighter object in the foreground.

It is possible for outliers to exist in the disparity map. Outliers are a result of

mismatched object points and have a negative effect on registration. To combat this,

a speckle filter was applied. This filter removes these outliers if they do not meet a

set threshold. It is possible that the filter may remove points off of the drone object,

however there still exist enough points to perform ICP.
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(a) Just Drone (b) Drone with Vicon Background

Figure 14. Disparity Maps

3.5 Re-projection and Point Cloud Generation

Once the disparity map is generated, the relationship between the left and right

imagery can be visualized. The disparity map coupled with the transformation Q

matrix enables the points to be reprojected in 3D space. To visualize points produced

by real world imagery, a re-projection was created in the virtual world. OpenCV

computes the x, y, and z components for each pixel point (px, py) [1] using Equation

1:

[xyzw]> = Q ∗ [px py disparity(px, py) 1]> (1)

This equation produces a matrix of 3D points that represent the sensed point

cloud. This matrix includes all sensed points, including points that are not the

desired object. Figure 15 shows a full point cloud that is generated. The first picture

includes the environment that is being projected, while the second picture is just the

point cloud. It can be seen that the walls are included in this point cloud. In order

for ICP to work properly, it is necessary that only the drone point cloud is projected.
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This was accomplished using the truth data that was provided by the Vicon chamber.

Points within half a meter of the drone location were the only points projected. It

is assumed that during an aerial refuel, any other objects will be far behind the

aircraft. The far points can be filtered, leaving the aircraft as the only point cloud

visible. Previous research filtered the point cloud at a specific cut off distance.

(a) Point cloud with the objects (b) Point Cloud

Figure 15. The Full Point Cloud Before Filtering

An additional filter was applied reducing the number of projected points to one

fourth of the total. This reduction increased the speed of ICP allowing for real

time registration. It was observed in [35] that reduction of the total point cloud

size still retained registration accuracy. Once the point cloud is reduced, it must

be transformed to the Vicon coordinate frame. The point transformation from the

sensed frame to the Vicon frame [xv yv zv] can be seen in Equation 2.

[xv yv zv] = [z (−x) (−y)] (2)

After this transformation, the points must be transformed into the position and

orientation of the left camera. The cameras position and orientation is applied to each

point in the point cloud. The transformation is done using the left camera direction

cosine matrix DCMcamera and the left camera position [xc yc zc]. The new points
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[x′ y′ z′] are produced by Equation 3.

[x′ y′ z′]> =
[
(DCMcamera)

> ∗ [xv yv zv]
>
]

+ [xc yc zc]
> (3)

Once the point cloud was filtered and transformed, it was used for ICP. The

filtered point cloud produced by synthetic imagery can be seen in Figure 16. The

view is from the perspective of the left camera.

(a) Point Cloud in Vicon (b) Drone Point Cloud

Figure 16. Point Cloud After Filtering

3.6 Model Registration

The ICP algorithm is used for registration of the sensed point cloud with the

reference model. A point-to-point ICP implementation with a modified KD-Tree is

used to converge the reference point cloud with the sensed point cloud [18]. The

rotations and translations at each iteration are tracked until the rms threshold is

reached or 30 iterations are completed. A successful ICP registration can be seen

in Figure 17. The yellow dots represent the sensed point cloud, while the red dots

represent the reference model. The reference model was created using a reduced set

of vertices from the virtual drone model.
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Figure 17. Successful ICP Registration

The shape of the qudcopter drone generates the potential for several local minima.

For this reason, the estimated orientation after ICP did not always correlate with the

truth data. This was observed regardless of real or synthetic imagery. In this research

we assume that the drone’s orientation will provide a top down view. This assumption

is based on the fact that a quad copter cannot sustain flight in another orientation

for an extended amount of time. For this reason, the primary focus of this research

is on the position of the reference model after ICP.

3.7 Experimental Design

This experiment measures the accuracy of the ICP algorithm as performed with

real and synthetic imagery. The estimated positions were computed and compared
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to the truth data provided by the Vicon chamber. Statistical analysis was performed

on the errors produced in both environments.

Experiment.

Using a Vicon chamber, a quadcopter drone was suspended using fishing line.

Several tracking markers were attached to the drone. The drone then performed six

pseudo-flights in the stereo camera frames. The cameras captured the drone’s flights

at 30hz. When processed, a disparity map of these images was generated. With

this information, a sensed point cloud was calculated and filtered. ICP registration

was performed on the filtered point cloud and the position of the reference model

estimation was recorded. The estimated position was transformed into the coordinates

relative to the primary camera. Once transformed, the estimated and truth positions

were used to find the error. These errors were used to compare the use of real and

synthetic imagery.

The computer vision pipeline is very similar in the virtual world. The difference

exists when updating the drone position and capturing the images. The virtual drones

position followed the logs produced by the Vicon chamber at 100hz. This log contains

the exact position and orientation of the drone relative to the chamber origin. The

drone was a one to one scaled model of the real world drone. This re-creation of the

real world experiment was captured by virtual stereo cameras. These images then

follow the same computer vision pipeline as the real world imagery.

The computer vision pipeline can be seen in Figure 18. After the camera calibra-

tion and stereo pairs were captured, the pipeline is identical. The real world imagery

was replayed in real time while the synthetic imagery was captured and immediately

processed. Captured image pairs generate the disparity map and a filtered point cloud

is projected. This point cloud is visualized in the virtual world regardless of image
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source. ICP registrations were performed with a maximum of 30 iterations. The 30

iterations allow for a time bounded stopping point. If the RMS error is lower than

the previous stopping point, ICP may terminate before 30 iterations.

Figure 18. Computer Vision Pipeline

Error in the estimated position was used for statistical analysis. Statistical analysis

included the mean, standard error, median, standard deviation, variance, range, min,

and maximum. Additionally, the root means squared deviation (RMSD) was also

calculated to show similar trends in behavior. The RMSD is calculated using Equation

4, where n is the number of samples and v̂p, vp are the estimated and truth positions

respectively.

RMS Error =

√∑p=1
n (v̂p − vp)2

n
(4)
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IV. Results

The AAR problem relies on the 6DoF estimation of the receiver when in the

refueling envelope. This envelope represents a 3D space where a receiver can obtain

fuel. It is possible for the receiver to approach from behind the tanker or from the

side of the tanker. For this reason, an omni-directional range needs to be evaluated.

This research directly relates to the AAR problem by testing a three dimensional

region. The region is restricted by the camera’s 56 degree field of view, as well as the

walls of the Vicon chamber. The drone covered a range in all directions: 2.07m to

4.33m in the x direction, -1.5m to 0.833m in the y direction, and -0.77m to 0.83m in

the z directions. This area can be visualized by the different flight paths in Figures

19 and 20. Each color ribbon represents one of the six flight paths. The rgb lines

that create a boundary represent the cameras’ frusta.
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Figure 19. Top View of the Flight Paths

(a) Side View (b) Side View

Figure 20. View of Flight Paths in Mock Envelope
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4.1 Reference Model Performance

The data analysis on estimations using real and synthetic imagery can be seen in

Tables 1 and 2 respectively. These numbers represent the XYZ error for the combined

6 tests performed. Over 2,000 data points were produced for each environment. The

mean errors in the X, Y, and Z directions are the main focus. Comparing the tables,

the means are all less than 1.5 cm of each other.

Table 1. Data Analysis for Real World Imagery

X Error Y Error Z Error

Mean 0.0438582 0.02056916 0.0216967

Std Error 0.00045979 0.00032269 0.00033994

Median 0.0451183 0.0175233 0.0182927

Std Deviation 0.02248279 0.0157789 0.0166222

Variance 0.00050548 0.00024897 0.0002763

Range 0.10699402 0.09146509 0.09541177

Minimum 0.0000879 0.00000381 0.0000119

Maximum 0.107082 0.0914689 0.0954237

The potential XYZ estimation error of the vision sensor can be anywhere in the

mock envelope. Taking the mean error and dividing it by the potential error gives a

percentage that can compare the real and synthetic results. The potential locations

based on the envelope can be in a range of [226cm, 298cm, 161cm] in the X, Y, and

Z directions, respectively. These comparisons can be seen in Table 3. The estimation

error from real world and synthetic imagery are less than 0.6% of each other.

Trends can be seen in the data when it is separated by distance magnitude from

the camera. The farthest distance being 4.49 meters and the closest distance being

2.09 meters. This divides the near and far fields into distances less than or greater

than 3.29 meters. Taking the RMSD of the observed values, the accuracy of ICP can
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Table 2. Data Analysis for Synthetic Imagery

X Error Y Error Z Error

Mean 0.03074492 0.00827584 0.01361484

Std Error 0.00028189 0.00017192 0.00030841

Median 0.0287218 0.00504518 0.00648254

Std Deviation 0.01446434 0.00882148 0.01582529

Variance 0.00020922 7.7819E-05 0.00025044

Range 0.14940237 0.05903988 0.09571146

Minimum 0.00011063 0.00000222 0.00000134

Maximum 0.149513 0.0590421 0.0957128

Table 3. Percent Error Comparison

X Y Z

Real World Error 1.94% 0.69% 1.35%
Synthetic Error 1.36% 0.28% 0.85%

Difference 0.58% 0.41% 0.50%
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be compared in the near and far fields. Table 4 shows that in both the real and the

virtual world, the ICP algorithm performs better in the near field. This comparison

confirms that behaviors present when using real world imagery are also present when

using synthetic imagery.

Table 4. RMSD analysis of the near and far fields

X Y Z

Real Imagery

< 3.29 m 0.02374769 0.02431408 0.06039172
>3.29 m 0.02710835 0.028942 0.06296416

Difference (%) 12.4 15.99 4.09

Synthetic Imagery

< 3.29 m 0.02866318 0.00836307 0.01297635
>3.29 m 0.03717344 0.01408743 0.02486816

Difference (%) 22.89 40.63 47.82

4.2 Visualizing Error Trends

The X, Y, and Z error can be compared using overlaid histograms. The data

is based on the errors produced by ICP in the six flight tests. The total number

of estimations for both sources ranged from 2300 to 2600 iterations, with synthetic

imagery producing more iterations. Figures 21, 22, and 23 show the error range of

estimations as well as the count of the number of errors in that range. It is noteworthy

that the X error average is greater than the Y and Z errors. This is expected based

on the numbers that are seen in the previous sections. This will be further shown

and investigated. The Y and Z errors for both the real and synthetic imagery have a

visible relationship. While the synthetic imagery does have a lot more estimations in

the lower range, they still have similar distributions.

The truth position and the estimated position both produce individual colored

ribbons, as seen in Figure 24. The ribbon with black represents the truth data. The

colors correlate to time such that the matching colors are the truth and estimate at
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Figure 21. Histogram of X Error

Figure 22. Histogram of Y Error
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Figure 23. Histogram of Z Error

that time. The top image is the error created using real world imagery, while the

bottom shows the error using synthetic imagery.
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(a) Using Real World Imagery

(b) Using Synthetic Imagery

Figure 24. Truth vs Estimated Position Visualized
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The trends in the data can easily be seen when visualized. By taking the magni-

tude of the error, a ribbon can represent the distance between the truth position and

the estimated position. Figure 25 shows the magnitude of the error, where the width

of the ribbon is the error in cm. Behavioral trends can be seen when the drone is

centered in the envelope and when the drone is on the far right of the envelope. The

error magnitude produced on the right is the largest section regardless of the image

source. Minimal error is seen in the center of both experiments. Generally, this is

due to image distortion. The edges and corners of images are skewed causing more

mismatched points. Image distortion is unavoidable regardless of environment, but

is minimized through camera calibration.
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(a) Using Synthetic Imagery

(b) Using Real World Imagery

Figure 25. Magnitude of the Error Visualized
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4.3 Reasons for Errors

There are several contributing factors as to why ICP produces estimation error.

One reason is the sensed point cloud lies on the top of the drone. Even with a

perfect point cloud, a full modeled reference point cloud will have an offset and sit in

front of the drone as seen in Figure 26. Despite the tight point cloud, the side view

of the drone shows the reference model with the offset. This error can be reduced

by shelling the model similar to [35]. If only half of the reference model is used, a

successful match will sit closer to the drone center point.

(a) Front View (b) Side View

Figure 26. Offset of the Reference Point Cloud

Computer vision is known to produce less sensed points for objects that are farther

away. Farther distance also creates a point cloud that is dispersed in the X direction,

or the depth from the camera. Figures 27 and 28 show a point cloud generated by

real world imagery. Figure 27 represents a point cloud 2 meters from the cameras

while Figure 28 represents a point cloud at 4.2 meters from the cameras. It is clear

that at a closer range the points are more numerous and tightly packed. This is due

to the close baseline of the cameras. There are less features in the image pairs the

greater the distance. Less features equates to a smaller point cloud. It is for this

reason the estimation error is greater in the X direction than the Y or Z directions.
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(a) Front View (b) Side View

Figure 27. Sensed Point Cloud at 2m

(a) Front View (b) Side View

Figure 28. Sensed Point Cloud at 4.2m

The quality of the point cloud is not the only factor that can cause errors. The

orientation of the drone proved difficult to estimate. While the spacing of the point

cloud caused orientation errors, the shape of the drone did not prove to be ideal. This

shape has many opportunities to get stuck in a local minimum as seen in Figure 29.

The symmetrical properties of the drone as well as the cross sections create a poor

model. An aircraft with wings and a tail would provide a better 3D model to match

with.
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(a) Front View

(b) Side View

Figure 29. Poor Registration
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V. Conclusion

5.1 State of AAR

Due to the latency between the operator and the UAV, it is not possible to perform

a mid flight refueling mission on a UAV. The stereo vision system on a modern tanker

provides potential for computer vision algorithms. This system can be used to sense

and guide the UAV in the refueling envelope. This approach saves time and money

by using hardware already installed on the tanker. This method does not require

adding sensors to the receiver. Experiments performed in the 3D virtual world and

the real world have shown promising results toward this method.

5.2 Research Conclusions

Experiments were performed in the real world and recreated in the virtual world.

The real world experiments were captured using physical cameras while the virtual

experiments were captured using synthetic sensors. The real and synthetic imagery

went through the same computer vision pipeline. Using ICP, the drone’s position es-

timation was produced. The real and synthetic imagery produced position estimation

errors within 0.6% of each other. Additionally, similar behavioral trends produced by

computer vision and ICP were examined. It was found that these behaviors existed

in both real and synthetic imagery solutions.

5.3 Research Contributions

This research shows the similarities of computer vision when using real and syn-

thetic imagery. These similarities are close enough to assume the virtual world can

be used as a substitute to the real world in preliminary tests. Capturing virtual
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experiments with synthetic data greatly reduces the hassle involved when planning,

executing and paying for real world tests.

5.4 Recommendations for Future Work

This work was done in a small scale environment. The imagery collected was also

using color images. Other cameras can sense infrared wavelengths and may produce

a different result with computer vision. For this reason, data from a real world flight

experiment should be used and duplicated in the virtual world. Computer vision can

then be performed on this experiment to evaluate the virtual and real environments.

Drone swarms are a current interest at AFIT. It may be possible to estimate the

6DoF of multiple objects. This would allow for positions to be measured on board

each drone. This would greatly reduce the communication traffic throughout the

swarm.

This research did not provide accurate estimations for the orientation of the drone.

This was due to the drone’s odd shape. It would be easier for ICP to estimate the

orientation of an object such as an airplane. This can further demonstrate the value

of using a virtual world for the AAR problem.
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